Calculations of Pore Size Distributions in Nanoporous Materials from Adsorption and Desorption Isotherms

نویسندگان

  • Peter I. Ravikovitch
  • Alexander V. Neimark
چکیده

The recently developed density functional theory method for pore size distribution analysis from nitrogen adsorption and desorption isotherms is extended to materials with pores ranging from 2 to 100 nm. The method is based on the nonlocal density functional theory (NLDFT) of capillary condensation hysteresis in cylindrical pores. It is shown that NLDFT correctly predicts both the adsorption and desorption branches of the hysteretic isotherms in materials with cylindrical pores wider than ca. 5 nm. For pores larger than ca. 6 nm, the NLDFT results agree well with the thermodynamic theory of Derjaguin-Broekhoff-de Boer. When pore-blocking (networking) effects are insignificant, both branches of the experimental isotherm produce identical pore size distributions. The NLDFT method is validated against literature data on capillary condensation in MCM-41 type materials with pores from 5 to10 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0927-7757(01)00614-8

We present a consistent method for calculation of pore size distributions in nanoporous materials from adsorption and desorption isotherms, which form the hysteresis loop H1 by the IUPAC classification. The method is based on the nonlocal density functional theory (NLDFT) of capillary condensation hysteresis in cylindrical pores. It is implemented for the nitrogen and argon sorption at their bo...

متن کامل

Pore Size Analysis of MCM-41 Type Adsorbents by Means of Nitrogen and Argon Adsorption.

Methods of nonlocal density functional theory (NLDFT), proposed recently for predictions of adsorption equilibrium and calculations of pore size distributions in micro- and mesoporous materials, were tested on reference MCM-41 materials. Five newly synthesized MCM-41 adsorbents with presumably uniform pore channels varying from 32 to 45 Å were characterized by X-ray diffraction (XRD), nitrogen ...

متن کامل

Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong p...

متن کامل

Synthesis of Ethylenediamine-modified Ordered Mesoporous Carbon as a New Nanoporous Adsorbent for Removal of Cu(II) and Pb(II) Ions from Aqueous Media

The mesoporous carbon (CMK-3) functionalized with ethylenediamine (EDA) has been synthesized (CMK-3-EDA) and applied as a new mesoporous adsorbent for removal of Cu(II) and Pb(II) cations from aqueous solutions. Nitrogen adsorption–desorption measurements (BET) show that surface area, pore size and pore volume of CMK-3 were significantly changed after amine modification. The BET surface area an...

متن کامل

Alkyl surface modification of nanoporous silica SBA-15 by click chemistry to obtain triazole products

In this study, Santa Barbara Amorphous (SBA-15) mesoporous silica has been functionalized with aminopropyl groups that were converted to propargyl-bearing moieties through the reaction with propargyl bromide. The material then underwent an efficient Cu(I)-catalyzed azide alkyne click reaction with sodium azide in order to obtain the corresponding triazole products. The covalent modification of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000